Температура обитания. Самые интересные факты о температуре. Что такое теплород

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    История изобретения термометра. Ртутные и спиртовые термометры. Теплоизоляция в жизни человека и животных. Увеличение и уменьшение потерь тепла у человека. Температура тела человека, тепловой баланс. Способы регулирования температуры в животном мире.

    доклад , добавлен 28.11.2010

    Температура - параметр, характеризующий тепловое состояние вещества. Температурные шкалы, приборы для измерения температуры и их основные виды. Термодинамический цикл поршневого двигателя внутреннего сгорания с подводом тепла при постоянном давления.

    контрольная работа , добавлен 25.03.2012

    Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.

    учебное пособие , добавлен 18.05.2014

    Характеристика величины, характеризующей тепловое состояние тела или меры его "нагретости". Причина Броуновского движения. Прародитель современных термометров, их виды. Единицы измерения температуры, типы шкал. Эксперимент по изготовлению термоскопа.

    презентация , добавлен 14.01.2014

    Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.

    курсовая работа , добавлен 07.06.2014

    Методики, используемые при измерении температур пламени: контактные - с помощью термоэлектрического термометра, и бесконтактные - оптические. Установка для измерения. Перспективы применения бесконтактных оптических методов измерения температуры пламени.

    курсовая работа , добавлен 24.03.2008

    Методика численного решения задач нестационарной теплопроводности. Расчет распределения температуры по сечению балки явным и неявным методами. Начальное распределение температуры в твердом теле (временные граничные условия). Преимущества неявного метода.

    Большинство видов растений и животных приспособлены к довольно узкому диапазону температур. Некоторые организмы, особенно в состоянии покоя или анабиоза способны выдерживать довольно низкие температуры. Колебание температуры в воде обычно меньше, чем на суше, поэтому пределы устойчивости к температуре у водных организмов хуже, чем у наземных. От температуры зависит интенсивность обмена веществ. В основном организмы живут при температуре от 0 до +50 на поверхности песка в пустыни и до – 70 в некоторых областях Восточной Сибири. Средний диапазон температур находится в пределах от +50 до –50 в наземных местообитаниях и от +2 до +27 – в Мировом океане. Например, микроорганизмы выдерживают охлаждение до –200, отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре + 80, +88.

    Различают животные организмы :

    Читайте также:

    Большинство видов растений и животных приспособлены к довольно узкому диапазону температур. Некоторые организмы, особенно в состоянии покоя или анабиоза способны выдерживать довольно низкие температуры. Колебание температуры в воде обычно меньше, чем на суше, поэтому пределы устойчивости к температуре у водных организмов хуже, чем у наземных. От температуры зависит интенсивность обмена веществ. В основном организмы живут при температуре от 0 до +50 на поверхности песка в пустыни и до – 70 в некоторых областях Восточной Сибири. Средний диапазон температур находится в пределах от +50 до –50 в наземных местообитаниях и от +2 до +27 – в Мировом океане.

    Например, микроорганизмы выдерживают охлаждение до –200, отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре + 80, +88.

    Различают животные организмы :

    1. с постоянной температурой тела (теплокровные);
    2. с непостоянной температурой тела (хладнокровные).

    Организмы с непостоянной температурой тела (рыбы, земноводные, пресмыкающиеся)

    В природе температура не постоянна. Организмы, которые живут в умеренных широтах и подвергаются колебанию температур, хуже переносят постоянную температуру. Резкие колебания – зной, морозы – неблагоприятны для организмов. Животные выработали приспособления для борьбы с охлаждением и перегревом. Например, с наступлением зимы растения и животные с непостоянной температурой тела впадают в состояние зимнего покоя. Интенсивность обмена веществ у них резко снижается. При подготовке к зиме в тканях животных запасается много жира, углеводов, количество воды в клетчатке уменьшается, накапливаются сахара, глицерин, препятствующий замерзанию. Так морозостойкость зимующих организмов увеличивается.

    В жаркое время года наоборот, включаются физиологические механизмы, защищающие от перегрева. У растений усиливается испарение влаги через устьица, что приводит к снижению температуры листьев. У животных усиливается испарение воды через дыхательную систему и кожу.

    Организмы с постоянной температурой тела. (птицы, млекопитающие)

    У этих организмов произошли изменения во внутреннем строении органов, что способствовало их приспособленности к постоянной температуре тела. Это, например – 4-х камерное сердце и наличие одной дуги аорты, обеспечивающие полное разделение артериального и венозного кровотока, интенсивный обмен веществ благодаря снабжению тканей артериальной кровью, насыщенной кислородом, перьевой или волосяной покров тела, способствующий сохранению тепла, хорошо развитая нервная деятельность). Все это позволило представителям птиц и млекопитающим сохранять активность при резких перепадах температур и освоить все места обитания.

    В природных условиях температура очень редко держится на уровне благоприятности для жизни. Поэтому у растений и животных возникает специальные приспособления, которые ослабляют резкие колебания температуры. У животных, например слонов большая ушная раковина, по сравнению с его предком мамонтом, живущем в холодном климате. Ушная раковина кроме органа слуха выполняет функцию терморегулятора. У растений для защиты от перегрева появляется восковой налет, плотная кутикула.

    Читайте также:

    Переохлаждение (гипотермия) — состояние, характеризующееся снижением температуры тела животного ниже 37,0 С° в результате преобладания процесса теплоотдачи организма над процессом теплопродукции.

    Происходить это может вследствие ряда причин, таких как длительное нахождение в условиях с пониженной температурой, холодной воде, шоковые состояния (травматический, болевой, анафилактический, гиповолемический виды шока) инфекционные заболевания, сахарный диабет, несовершенство механизмов терморегуляции (например, у щенят), гормональные расстройства.

    Клинические признаки.

    При гипотермии животное не встаёт, испытывает общее угнетение, которое вызывается чрезвычайно сильными нарушениями обмена веществ и энергии в клетках, а также расстройствами функций жизненно важных органов. Животные стремятся лечь в тёплое место, сворачиваются в клубок. Шерсть взъерошивается, за счёт чего увеличивается воздушная прослойка между воздухом внешней среды и кожей. Появляется мышечная дрожь, в результате которой образуется дополнительное тепло. Происходит сужение кровеносных сосудов на поверхности тела (периферический спазм сосудов), что позволяет снизить потери тепла с поверхности кожи. При этом кожа и видимые слизистые оболочки становятся более бледными и прохладными. Если переохлаждение прогрессирует, у животного пропадает дрожь, пульс становится слабым или отсутствует. Дыхание поверхностное и редкое. Сердечные сокращения трудно определить, их частота резко снижена. Развиваются серьезные нарушения сердечного ритма. Дальнейшее понижение температуры сопровождается тяжёлыми расстройствами функций организма и его гибелью.

    Неотложная помощь.

    Повышение температуры тела до нормы является первостепенной задачей в лечении животного с симптомами гипотермии, какими бы причинами ни было вызвано снижение температуры.

    ТЕМПЕРАТУРА

    Достигается это следующими методами:

    1. Пассивный метод. Укрыть животное одеялом для уменьшения потерь тепла. Это помогает при незначительной гипотермии.
    2. Активное внешнее согревание. Для этого способа используются грелки, фен, воздушные согревающие одеяла. Причем, для большей эффективности, согревать нужно не лапы, а тело животного.
    3. Активное внутреннее согревание. Применяется в случаях, когда неэффективны другие методы. Он заключается в том, что животному вливаются теплые жидкости (например, 0,9% раствор натрия хлорида) внутривенно, либо проводится диализ брюшной полости тем же раствором. Метод этот выполняется только квалифицированными врачами в условиях клиники.

    Необходимо периодически измерять температуру тела животного. При тяжёлой гипотермии, помимо согревания, пострадавшее животное нуждается в интенсивной терапии, направленной не только на коррекцию имеющихся расстройств функций органов и систем, но и профилактику возможных осложнений. Основные усилия при этом сосредоточиваются на поддержании адекватного дыхания, эффективного кровообращения, оптимального обмена веществ, предупреждении дальнейшего охлаждения и постепенном активном согревании организма.

    Профилактика.

    1. Не оставляйте своё животное в холодном помещении надолго.
    2. Если вы хозяин короткошёрстной собаки, помните, что в сильные морозы прогулка с животным должна быть непродолжительной.
    3. Приобретите для своей собаки ботинки и тёплый комбинезон на зиму.

    Пойкилотермные и гомойотермные организмы. Представители большинства видов живых организмов не обладают способностью активной терморегуляции своего тела. Их активность зависит прежде всего от тепла, поступающего извне, а температура тела - от величины температуры окружающей среды. Такие организмы называют пойкилотермными (эктотермпыми). Пойкило-термия свойственна всем микроорганизмам, растениям, беспозвоночным и большей части хордовых.

    Только у птиц и млекопитающих тепло, вырабатываемое в процессе интенсивного обмена веществ, служит достаточно надежным источником повышения температуры тела и поддержания ее на постоянном уровне независимо от температуры окружающей среды. Этому способствует хорошая тепловая изоляция, создаваемая шерстным покровом, плотным оперением, толстым слоем подкожной жировой ткани. Такие организмы называют гомойотермными (эндотермными, или теплокровными). Свойство эндотермности позволяет многим видам животных (белым медведям, ластоногим, пингвинам и др.) вести активный образ жизни при низких температурах.

    Частный случай гомоЙотермии - гетеротермия - свойственна животным, впадающим в неблагоприятный период года в спячку или временное оцепенение (суслики, ежи, летучие мыши, сони и др.). В активном состоянии они поддерживают высокую температуру тела, а в случае низкой активности организма - пониженную, что сопровождается замедлением процессов обмена веществ и, как следствие, низкой теплоотдачей.

    Температурная адаптация растений. Дня большинства наземных растений оптимальной является температура +25-30°С, а для таких требовательных к теплу растений, как кукуруза, фасоль, соя и другие виды тропического и субтропического происхождения, - +30-35°С. Следует иметь в виду, что для каждой фазы и стадии развития растений существует как оптимальный, так и верхний и нижний пределы температурного режима.

    При воздействии на растение высоких температур происходит сильное обезвоживание и иссушение, ожоги, разрушение хлорофилла, необратимые расстройства дыхания, наконец, тепловая денатурация белков, коагуляция цитоплазмы и гибель.

    Противостоять опасному влиянию экстремально высоких температур растения способны благодаря усиленной транспирации, накапливанию в цитоплазме защитных веществ (слизи, органических кислот и др.), сдвигам температурного оптимума активности важнейших ферментов, переходу в состояние глубокого покоя, а также занятию ими временных местообитаний, защищенных от сильного перегрева. Это означает, что у некоторых растений вся вегетация сдвигается на сезон с более благоприятными тепловыми условиями. Так, в пустынях и степях есть немало видов растений, начинающих вегетацию очень рано весной и успевающих ее закончить до наступления летней жары. Они переживают эти условия в состоянии летнего покоя - уже созрели семена или появились подземные органы -луковицы, клубни, корневища (тюльпаны, крокусы, мятлик луковичный и др.)

    Морфологические адаптации, предотвращающие перегрев, практически те же самые, что служат растению для ослабления потока солнечной радиации. Это блестящая поверхность и густое опушение, придающие листьям светлую окраску и повышающие отражение солнечного излучения, вертикальное положение листьев, свертывание листовых пластинок (у злаков), уменьшение листовой поверхности и т. д. Эти же особенности строения растений одновременно обеспечивают им возможность уменьшения потерь воды. Таким образом, комплексное действие экологических факторов на организм находит отражение в комплексном характере адаптации.

    Опасность низких температур для растений сводится к тому, что в межклетниках и клетках замерзает вода и, как следствие, происходит обезвоживание и механическое повреждение клеток, а затем коагуляция белков и разрушение цитоплазмы. Холод тормозит процессы роста растений, фотосинтеза, образования хлорофилла, снижает энергетическую эффективность дыхания, резко замедляет скорость развития.

    Для перенесения неблагоприятных условий холодного периода года растения готовятся заранее: у них опадают листья, а у травянистых форм - надземные органы, происходит опушение почечных чешуи, зимнее засмоление почек (у хвойных), образование толстой кутикулы, утолщенного пробкового слоя и т. д.

    Среди морфологических адаптации растений к жизни в холодных широтах важное значение имеют небольшие размеры (карликовость) и особые формы роста. Высота карликовых растений (карликовая береза, карликовые ивы и др.) обычно соответствует глубине снежного покрова, под которым зимуют растения, так как все части, выступающие над снегом, гибнут от замерзания. Подобная защита от холода характерна и для стелющихся форм - стлаников (кедрового стланика, можжевельника, рябины и др.) и подушковидных форм, образуемых в результате усиленного ветвления и крайне замедленного роста побегов.

    Примером физиологической адаптации растений, препятствующей замерзанию воды в межклетниках и клетках, их обезвоживанию и механическому повреждению, служит повышение концентрации растворимых углеводов в клеточном соке, что способствует понижению точки замерзания.

    Температурная адаптация животных. По сравнению с растениями животные обладают более разнообразными возможностями адаптации к воздействию различных температур. Обычно выделяют три основных пути температурных адаптации: 1) химическая терморегуляция (усиленное образование тепла в ответ на понижение температуры среды); 2) физическая терморегуляция (изменение уровня теплоотдачи, способность удерживать тепло или, наоборот, рассеивать его избыток); 3) поведенческая терморегуляция (избегание неблагоприятных температур путем перемещений в пространстве или изменение поведения более сложным образом).

    Пойкилотермные животные, в отличие от гомойотермных, характеризуются более низким уровнем обмена веществ даже при одинаковой температуре тела. Например, пустынная игуана при температуре +37°С потребляет кислорода в 7 раз меньше, чем грызуны такой же массы. По этой причине в теле иойкилотермных животных вырабатывается мало тепла, и, как следствие, возможности химической и физической терморегуляции ничтожны. Основным способом регуляции температуры тела у них являются особенности поведения - перемена позы, активный поиск благоприятных климатических условий, смена мест обитания, самостоятельное создание нужного микроклимата (сооружение гнезд, рытье нор и т.

    Измерение температуры тела у животных

    п.). Например, в сильную жару животные прячутся в тень, скрываются в норах, а некоторые виды пустынных ящериц и змей взбираются на кусты, избегая соприкосновения с раскаленной поверхностью почвы.

    Некоторые пойкилотермные животные способны поддерживать оптимальную температуру тела за счет работы мышц. Так, шмели разогревают тело путем активизации мышечных сокращений (дрожью) до +32 и 33°С, что дает им возможность взлетать и кормиться в прохладную погоду.

    Гомойотермия развилась из пойкилотермии путем интенсификации обменных процессов и усовершенствования способов регуляции теплообмена животных с окружающей средой. Эффективная регуляция поступления и отдачи тепла позволяет взрослым гомойотермным животным поддерживать постоянную оптимальную температуру тела во все времена года.

    Благодаря высокой интенсивности обмена веществ и выработке значительного количества тепла гомойотермные животные отличаются высокой способностью к химической терморегуляции, что особенно важно при действии холода. Однако поддержание температуры за счет возрастания теплопродукции требует большого расхода энергии, поэтому животные в холодный период года нуждаются в большом количестве пищи или тратят много жировых запасов, накопленных ранее. Например, птицам, остающимся зимовать, страшны не столько морозы, сколько бескормица. В случае хорошего урожая семян ели и сосны клесты зимой даже выводят птенцов. Но при недостатке корма в зимний период такой тип терморегуляции экологически невыгоден, поэтому слабо развит у песцов, моржей, тюленей, белых медведей и других животных, обитающих за полярным кругом.

    Физическая терморегуляция, обеспечивающая адаптацию к холоду не за счет дополнительной выработки тепла, а за счет сохранения его в теле животного, осуществляется путем рефлекторного сужения и расширения кровеносных сосудов кожи, меняющих ее теплопроводность, изменения теплоизолирующих свойств меха и перьевого покрова, регуляции испарительной теплоотдачи.

    Густой мех млекопитающих, перьевой покров птиц позволяют сохранять вокруг тела прослойку воздуха с температурой, близкой к температуре тела животного, и тем самым уменьшать теплоотдачу во внешнюю среду. У обитателей холодного климата хорошо развит слой подкожной жировой клетчатки, который равномерно распределен по всему телу и является хорошим теплоизолятором.

    Эффективным механизмом регуляции теплообмена служит также испарение воды путем потоотделения или через влажные оболочки полости рта (например, у собак). Так, человек при сильной жаре может выделять более 10 л пота в день, способствуя тем самым охлаждению тела.

    Поведенческие способы регуляции теплообмена у гомойотермных животных такие же, как и у пойкилотермных.

    Таким образом, сочетание эффективных способов химической, физической и поведенческой терморегуляции позволяет теплокровным животным поддерживать свой тепловой баланс на фоне широких колебаний температуры среды.

    ⇐ Предыдущая12345678

    Температура является важнейшим экологическим фактором. Температура оказывает огромное влияние на многие стороны жизнедеятельности организмов их географии распространения, размножения и другие биологические свойства организмов зависящие в основном от температуры. Диапазон, т.е. пределы температур в которых может существовать жизнь, колеблется примерно от -200°С до +100°С, иногда обнаруживается существование бактерии в горячих источниках при температуре 250°С. В действительности, большинство организмов могут существовать при еще более узком диапазоне температур.

    Некоторые виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться в горячих источниках при температуре, близкой к точке кипения. Верхний температурный предел для бактерии горячих источников лежит около 90°С. Изменчивость температуры очень важна с экологической точки зрения.

    Любой вид способен жить только в пределах определенного интервала температур, так называемые максимальной и минимальной летальной температурами. За пределами этих критических крайних температур, холод или жара, наступает смерть организма. Где-то между ними находится оптимальная температура, при которой жизнедеятельность всех организмов, живого вещества в целом идет активно.

    По толерантности организмов к температурному режиму они делятся на эвритермные и стенотермные, т.е. способные переносить колебание температуры в широких пределах или узких пределах. Например, лишайники и многие бактерии могу жить при различной температуре, или орхидеи и другие теплолюбивые растения тропических поясов — являются стенотермными.

    Некоторые животные способны поддерживать постоянную температуру тела, не зависимо от температуры окружающей среды. Такие организмы называются гомойтермными. У других животных температура тела меняется в зависимости от температуры окружающей среды. Их называют пойкилотермными. В зависимости от способа адаптации организмов к температурному режиму они делятся на две экологические группы: криофиллы — организмы приспособленные к холоду, к низким темпера турам; термофилы — или теплолюбивые.

    Правило Аллена — экогеографическое правило, установленное Д. Алленом в 1877 г. Согласно с этим правилом среди родственных форм гомойотермных (теплокровных) животных, ведущих сходный образ жизни, те, которые обитают в более холодном климате, имеют относительно меньшие выступающие части тела: уши, ноги, хвосты и т. д.

    Уменьшение выступающих частей тела приводит к уменьшению относительной поверхности тела и способствует экономии тепла.

    Примером данного правила являются представители семейства Собачьи из различных регионов. Наименьшие (относительно длины тела) уши и менее вытянутая морда в этом семействе — у песца (ареал — Арктика), а наибольшие уши и узкая, вытянутая морда — у лисицы фенека (ареал — Сахара).


    Также это правило выполняется в отношении в человеческих популяций: самые короткие (относительно размеров тела) нос, руки и ноги характерны для эсскимосско-алеутских народов (эскимосов, инуитов), а длинные руки и ноги для фур и тутси.

    Правило Бергмана — экогеографическое правило, сформулированное в 1847 г. немецким биологом Карлом Бергманом. Правило гласит, что среди сходных форм гомойотермных (теплокровных) животных наиболее крупными являются те, которые живут в условиях более холодного климата — в высоких широтах или в горах. Если существуют близкие виды (например, виды одного рода), которые существенно не отличаются по характеру питания и образу жизни, то более крупные виды также встречаются в условиях более сурового (холодного) климата.

    Правило основано на предположении, что общая теплопродукция у эндотермных видов зависит от объёма тела, а скорость теплоотдачи — от площади его поверхности. При увеличении размеров организмов объём тела растет быстрее, чем его поверхность. Экспериментально это правило впервые было проверено на собаках разного размера. Оказалось, что теплопродукция у мелких собак выше на единицу массы, но независимо от размера она остается практически постоянной на единицу площади поверхности.

    Правило Бергмана действительно нередко выполняется как в пределах одного вида, так и среди близких видов. Например,амурская форма тигра с Дальнего Востока крупнее суматранской из Индонезии. Северные подвиды волка в среднем крупнее южных. Среди близких видов рода медведь наиболее крупные обитают в северных широтах (белый медведь, бурые медведи с о. Кодьяк), а наиболее мелкие виды (например, очковый медведь) — в районах с теплым климатом.

    В то же время это правило нередко подвергалось критике; отмечалось, что оно не может иметь общего характера, так как на размеры млекопитающих и птиц влияют многие другие факторы, кроме температуры. Кроме того, адаптации к суровому климату на популяционном и видовом уровне часто происходят не за счет изменений размеров тела, а за счет изменений размеров внутренних органов (увеличение размера сердца и легких) или за счет биохимических адаптаций. С учетом этой критики необходимо подчеркнуть, что правило Бергмана носит статистический характер и проявляет свое действие отчетливо при прочих равных условиях.

    Действительно, из этого правила известно много исключений. Так, наиболее мелкая раса шерстистого мамонта известна с заполярного острова Врангеля; многие лесные подвиды волка крупнее тундровых (например, исчезнувший подвид с полуострова Кенай; предполагается, что крупные размеры могли давать этим волкам преимущество при охоте на крупных лосей, населяющих полуостров). Дальневосточный подвид леопарда, обитающий на Амуре, существенно меньше, чем африканский. В приведенных примерах сравниваемые формы отличаются по образу жизни (островные и континентальные популяции; тундровый подвид, питающийся более мелкой добычей и лесной, питающийся более крупной).

    В отношении человека правило в определенной степени применимо (например, племена пигмеев, видимо, неоднократно и независимо появлялись в разных районах с тропическим климатом); однако из-за различий в местных диетах и обычаях, миграции и дрейфа генов между популяциями накладываются ограничения на применимость этого правила.

    Правило Глогера состоит в том, что среди родственных друг другу форм (разных рас или подвидов одного вида, родственных видов) гомойотермных (теплокровных) животных, те, которые обитают в условиях тёплого и влажного климата, окрашены ярче, чем те, которые обитают в условиях холодного и сухого климата. Установлено в 1833 году Константином Глогером (Gloger C. W. L.; 1803-1863), польским и немецким орнитологом.

    К примеру, большинство пустынных видов птиц окрашены тусклее, чем их родственники из субтропических и тропических лесов. Объясняться правило Глогера может как соображениями маскировки, так и влиянием климатических условий на синтез пигментов. В определённой степени правило Глогера распространяется и напойкилотермных (холоднокровных) животных, в частности, насекомых.

    Влажность как экологический фактор

    Первоначально все организмы были водными. Завоевав сушу, не утратили зависимости от воды. Составной частью всех живых организмов является вода. Влажность — это количество водяного пара в воздухе. Без влажности или воды нет жизни.

    Влажность - это параметр характеризующий содержание водяного пара в воздухе. Абсолютная влажность - это количество водяного пара в воздухе и зависит от температуры и давления. Это количество называется относительной влажностью (т.е. соотношение количества водяного пара в воздухе к насыщенному количеству пара при определенных условиях температуры и давления.)

    В природе существует суточный ритм влажности. Влажность колеблется по вертикали и горизонтали. Этот фактор наряду со светом и температурой играет большую роль в регулировании активности организмов и их распространении. Влажность изменяет и эффект температуры.

    Важным экологическим фактором является иссушение воздуха. Особенно для наземных организмов, имеет огромное значение иссушающие действие воздуха. Животные приспосабливаются, передвигаясь в защищенные места и активный образ жизни ведут ночью.

    Растения поглощают воду из почвы и почти полностью (97-99%) испаряется через листья. Этот процесс называется транспирацией. Испарение охлаждает листья. Благодаря испарению идет транспорт ионов, через почву к корням, транспорт ионов между клетками и т.д.

    Определенное количество влажности совершенно необходима для наземных организмов. Многие из них для нормальной жизнедеятельности нуждаются в относительной влажности 100%, и наоборот организм находящийся в нормальном состоянии, не может жить долгое время в абсолютно сухом воздухе, ибо он постоянно теряет воду. Вода есть необходимая часть живого вещества. Поэтому потеря воды в известном количестве приводит к гибели.

    Растения сухого климата приспосабливается морфологическими изменениями, редукцией вегетативных органов, особенно листьев.

    Наземные животные также приспосабливаются. Многие из них пьют воду, другие всасывают ее через покровы тела в жидком или парообразном состоянии. Например, большинство амфибий, некоторые насекомые и клещи. Большая часть животных пустынь никогда не пьет, они удовлетворяют свои потребности за счет воды, поступившей с пищей. Другие животные получает воду в процессе окисления жиров.

    Вода для живых организмов совершенно необходима. Поэтому организмы распространяются по местообитанию в зависимости от своих потребностей: водные организмы в воде живут постоянно; гидрофиты могут жить только в очень влажных средах.

    С точки зрения экологической валентности гидрофиты и гигрофиты относятся к группе стеногигров. Влажность сильно влияет на жизненные функции организмов, например, 70% относительная влажность была очень благоприятным для полевого созревания и плодовитости самок перелетной саранчи. При благоприятном размножении они причиняют огромный экономический урон посевам многих стран.

    Для экологической оценки распространения организмов пользуются показателем сухости климата. Сухость служит селективным фактором для экологической классификации организмов.

    Таким образом, в зависимости от особенностей влажности местного климата виды организмов распределяются по экологическим группам:

    1. Гидатофиты — это водные растения.

    2. Гидрофиты — это растения наземно-водные.

    3. Гигрофиты — наземные растения живущие в условиях повышенной влажности.

    4. Мезофиты — это растения, произрастающие при среднем увлажнении

    5. Ксерофиты — это растения произрастающие с недостаточным увлажнением. Они в свою очередь делятся на: суккуленты — сочные растения (кактусы); склерофиты — это растения с узкими и мелкими листьями, и свернутыми в трубочки. Они также делятся на эуксерофиты и стипаксерофиты. Эуксерофиты — это степные растения. Стипаксерофиты — это группа узколистных дерновинных злаков (ковыль, типчак, тонконог и др.). В свою очередь мезофиты также делятся на мезогигрофиты, мезоксерофиты и т.д.

    Уступая по своему значению температуре, влажность относится тем не менее к основным экологическим факторам. На протяжении большей части истории живой природы органический мир был представлен исключительно водными нормами организмов. Составной частью огромного большинства живых существ является вода, и для осуществления размножения или слияния гамет почти все они нуждаются в водной среде. Сухопутные животные вынуждены создавать в своем теле искусственную водную среду для оплодотворения, а это приводят к тому, что последнее становится внутренним.

    Влажность - это количество водяного пара в воздухе. Его можно выразить в граммах на кубический метр.

    Свет как экологический фактор. Роль света в жизни организмов

    Свет, есть одна из форм энергии. По первому закону термодинамики, или закону сохранения энергии, энергия может переходить из одной формы в другую. По этому закону, организмы являются термодинамической системой постоянно обменивающейся с окружающей средой энергией и веществом. Организмы, на поверхности Земли подвергаются воздействию потока энергии, в основном солнечной энергий, а также и длинноволного теплового излучения космических тел.

    Оба эти фактора определяют климатические условия среды (температура, скорость испарения воды, движение воздуха и воды). На биосферу из космоса падает солнечный свет с энергией 2 кал. на 1см 2 в 1 мин. Эта так называемая солнечная постоянная. Этот свет, проходя через атмосферу, ослабляется и до поверхности Земли в ясный полдень может дойти не более 67% его энергии, т.е. 1,34 кал. на см 2 в 1мин. Проходя через облачный покров, воду и растительность, солнечный свет еще больше ослабляется, и в нем значительно изменяется распределение энергии по разным участкам спектра.

    Степень ослабления солнечного света и космического излучения зависит от длины волны (частоты) света. Ультрафиолетовое излучение с длиной волны менее 0,3 мкм почти не проходит через озоновый слой (на высоте около 25 км). Такое излучение опасно для живого организма в частности для протоплазмы.

    В живой природе свет единственный источник энергии, все растения, кроме бактерий фотосинтезируют, т.е. синтезируют органические вещества из неорганических веществ (т.е. из воды, минеральных солей и СО-В живой природе свет единственный источник энергии, все растения, кроме бактерий 2 — при помощи лучистой энергии в процессе ассимиляции). Все организмы зависят в питании от земных фотосинтезирующих т.е. хлорофиллоносных растений.

    Свет как экологический фактор делится на ультрафиолетовый с длиной волны - 0,40 - 0,75 мкм и инфракрасный с длиной волны больше этих величии.

    Действие этих факторов зависит от свойства организмов. Каждый вид организма адаптирован к тому или иному спектру длиной волны света. Одни виды организмов адаптировались к ультрафиолетовым, а другие к инфракрасным.

    Некоторые организмы способны различить длину волны. Они обладают специальными световоспринимаемыми системами и имеют цветное зрение, которые имеют огромное значение в их жизнедеятельности. Многие насекомые чувствительны к коротковолновому излучение, которое человек не воспринимает. Ночные бабочки хорошо воспринимают ультрафиолетовые лучи. Пчелы и птицы точно определяют свое местонахождение и ориентируются на местности даже ночью.

    Организмы сильно реагируют и на интенсивность света. По этим признакам растения делятся на три экологические группы:

    1. Светолюбивые, солнцелюбивые или гелиофиты - которые способны нормально развиваться только под солнечными лучами.

    2. Тенелюбивые, или сциофиты - это растения нижних ярусов лесов и глубоководные растения, например, ландыши и другие.

    При снижении интенсивности света замедляется и фотосинтез. У всех живых организмов существуют пороговые чувствительности интенсивности света, а также к другим экологическим факторам. У различных организмов пороговая чувствительность к экологическим факторам неодинакова. Например, интенсивный свет тормозит развитие мух дрозофилл, даже вызывает их гибель. Не любят свет и тараканы и другие насекомые. У большинства фотосинтетических растений при слабой интенсивности света идет торможение синтеза белков, а у животных тормозятся процессы биосинтеза.

    3. Теневыносливые или факультативные гелиофиты. Растения которые хорошо растут и в тени и на свету. У животных эти свойства организмов называются светолюбивые (фотофилы), тенелюбивые (фотофобы), эврифобные — стенофобные.

    Экологическая валентность

    степень приспособляемости живого организма к изменениямусловий среды. Э. в. представляет собой видовое свойство. Количественно она выражается диапазономизменений среды, в пределах которого данный вид сохраняет нормальную жизнедеятельность. Э. в. можетрассматриваться как в отношении реакции вида на отдельные факторы среды, так и в отношении комплексафакторов.

    В первом случае виды, переносящие широкие изменения силы воздействующего фактора,обозначаются термином, состоящим из названия данного фактора с приставкой «эври» (эвритермные — поотношению к влиянию температуры, эвригалинные — к солёности, эврибатные — к глубине и т.п.); виды, приспособленные лишь к небольшим изменениям данного фактора, обозначаются аналогичным термином сприставкой «стено» (стенотермные, стеногалинные и т.п.). Виды, обладающие широкой Э. в. по отношению ккомплексу факторов, называются эврибионтами (См. Эврибионты) в противоположность стенобионтам (См.Стенобионты), обладающим малой приспособляемостью. Поскольку эврибионтность даёт возможностьзаселения разнообразных мест обитания, а стенобионтность резко суживает круг пригодных для вида стаций,эти две группы часто называют соответственно эври- или стенотопными.

    Эврибионты , животные и растительные организмы, способные существовать при значительные изменениях условий окружающей среды. Так, например, обитатели морской литорали переносят регулярное осушение во время отлива, летом — сильное прогревание, а зимой — охлаждение, а иногда и промерзание (эвритермные животные); обитатели эстуариев рек выдерживают значит. колебания солёности воды (эвригалинные животные); ряд животных существует в широком диапазоне гидростатического давления (эврибатные животные). Многие наземные обитатели умеренных широт способны выдерживать большие сезонные колебания температуры.

    Эврибионтность вида увеличивается способностью переносить неблагоприятные условия в состоянии анабиоза (многие бактерии, споры и семена многих растений, взрослые многолетние растения холодных и умеренных широт, зимующие почки пресноводных губок и мшанок, яйца жаброногих ракообразных, взрослые тихоходки и некоторые коловратки и др.) или спячки (некоторые млекопитающие).

    ПРАВИЛО ЧЕТВЕРИКОВА, правило, согласно к-рому в природе все виды живых организмов, представлены не отдельными изолированными особями, а в форме совокупностей числа (иногда очень большого) особей-популяций. Выведено С. С. Четвериковым (1903).

    Вид - это исторически сложившаяся совокупность популяций особей, сходных по морфо-физиологическим свойствам, способных свободно скрещиваться между собой и давать плодовитое потомство, занимающих определенный ареал. Каждый вид живых организмов можно описать совокупностью характерных черт, свойств, которые называются признаками вида. Признаки вида, с помощью которых один вид можно отличить от другого, называются критериями вида.

    Наиболее часто используют семь общих критериев вида:

    1. Специфический тип организации: совокупность характерных признаков, позволяющих отличить особей данного вида от особей другого.

    2. Географическая определенность: существование особей вида в конкретном месте на земном шаре; ареал -район обитания особей данного вида.

    3. Экологическая определенность: особи вида живут в конкретном диапазоне значений физических факторов среды, таких как температура, влажность, давление и пр.

    4. Дифференцированность: вид состоит из более мелких групп особей.

    5. Дискретность: особи данного вида отделены от особей другого разрывом - хиатусом.Хиатус определяется действием изолирующих механизмов, таких как несовпадение сроков размножения, использование специфических поведенческих реакций, стерильность гибридов и др.

    6. Воспроизводимость: размножение особей может осуществляться бесполым путем (степень изменчивости низкая) и половым (степень изменчивости высокая, так как каждый организм сочетает признаки отца и матери).

    7. Определенный уровень численности: численность претерпевает периодические (волны жизни) и непериодические изменения.

    Особи любого вида распределяются в пространстве крайне неравномерно. Например, крапива двудомная в пределах своего ареала встречается только во влажных тенистых местах с плодородной почвой, образуя заросли в поймах Рек, ручьев, вокруг озер, по окраинам топей, в смешанных лесах и зарослях кустарников. Колонии европейского кроте, хорошо заметные по холмикам земли, встречаются на лесных опушках, лугах и полях. Подходящие для жизни
    места обитания хоть и встречаются часто в пределах ареала, но не покрывают весь ареал, и поэтому на других его участках особи данного вида не встречаются. Нет смысла искать крапиву в сосновом лесу или крота на болоте.

    Таким образом, неравномерность распределения вида в пространстве выражается в виде «островков плотности», «сгущений». Участки с относительно высоким распространением данного вида чередуются с участками с низкой численностью. Такие «центры плотности» населения каждого вида и называются популяциями. Популяция - это совокупность особей данного вида, в течение длительного времени (большого числа поколений) населяющих определенное пространство (часть ареала), и изолированная от других таких же совокупностей.

    Внутри популяции практически осуществляется свободное скрещивание (панмиксия). Иными словами, популяция - это группа свободно скрепгдвающихся между собой особей, проживающих длительно на определенной территории, и относительно изолированная от других таких же групп. Вид, таким образом, представляет собой совокупность популяций, а популяция является структурной единицей вида.

    Отличие популяции от вида:

    1) особи разных популяций свободно скрещиваются друг с другом,

    2) особи разных популяций слабо различаются между собой,

    3) между двумя соседними популяциями нет разрыва, то есть между ними существует постепенный переход.

    Процесс видообразования. Предположим, что данный вид занимает определенный ареал, определяемый характером питания. В результате дивергенции между особями увеличивается ареал. В новом ареале будут находиться участки с различными кормовыми растениями, физико-химическими свойствами и т. д. Особи, оказавшиеся в различных участках ареала, формируют популяции. В дальнейшем, в результате все усиливающегося различия между особями популяций, будет все явственнее, что особи одной популяции отличаются по какому-то признаку от особей другой популяции. Происходит процесс дивергенции популяций. В каждой из них накапливаются мутации.

    Представители любого вида в локальной части ареала образуют местную популяцию. Совокупность местных популяций, связанных с однородными по условиям жизни участками ареала, составляет экологическую популяцию. Так, если вид обитает на лугу и в лесу, то говорят о его десной и луговой популяциях. Популяции в пределах ареала вида, связанные с определенными географическими границами, называются географическими популяциями.
    Размеры и границы популяций могут резко меняться. При вспышках массового размножения вид расселяется очень широко и возникают гигантские популяции.

    Совокупность географических популяций с устойчивыми признаками, способностью скрещиваться и давать плодовитое потомство называется подвидом. Дарвин говорил, что образование новых видов идет через разновидности (подвиды).

    Следует, однако, помнить, что в природе часто какой-то элемент отсутствует.
    Мутации, происходящие у особей каждого подвида, не могут сами по себе привести к образованию новых видов. Причина кроется в том, что данная мутация будет блуждать по популяции, так как особи подвидов, как мы знаем, репродуктивно не изолированы. Если мутация полезна, она увеличивает гетерозиготность популяции, если вредна, то будет попросту отброшена отбором.

    В результате постоянно протекающего мутационного процесса и свободного скрещивания в популяциях накапливаются мутации. Создается, по теории И. И. Шмальгаузена , резерв наследственной изменчивости, т. е. подавляющее большинство возникающих мутаций рецессивны и фенотипически не проявляются. По достижении высокой концентрации мутаций в гетерозиготном состоянии делается вероятным скрещивание особей, несущих рецессивные гены. При этом появляются гомозиготные особи, у которых мутации уже проявляются фенотипически. В этих случаях мутации уже подпадают под контроль естественного отбора.
    Но это еще не имеет решающего значения для процессу видообразования, потому что природные популяции являются открытыми и в них постоянно вносятся чужеродны^ гены из соседних популяций.

    Имеет место поток генов, дjстаточный для поддержания большого сходства генофондов (совокупность всех генотипов) всех местных популяций. Подсчитано, что пополнение генофонда за счет чужеродных генов в популяции, состоящей из 200 особей, каждая из которых имеет 100 ООО локусов, в 100 раз больше, чем-, за счет мутаций. Вследствие этого ни одна популяция не может резко меняться до тех пор, пока она подвержена нормализующему влиянию потока генов. Устойчивость популяции к изменению ее генетического состава под влиянием отбора называется генетическим гомеостазом.

    В результате генетического гомеостаза в популяции образование нового вида сильно затруднено. Должно реализоваться еще одно условие! А именно необходима изоляция генофонда дочерней популяции от материнского генофонда. Изоляция может быть в двух формах: пространственной и временной. Пространственная изоляция возникает благодаря различным географическим барьерам, таким как пустыни, леса, реки, дюны, поймы. Чаще всего пространственная изоляция возникает из-за резкого сокращения сплошного ареала и распадения его на отдельные карманы или ниши.

    Часто популяция изолируется в результате миграции. таком случае возникает популяция-изолянт. Однако, по-скольку обычно количество особей в популяции-изолянте евелико, существует опасность инбридинга - вырождения, вязанного с близкородственным скрещиванием. Видооб-азование на основе пространственной изоляции называется географическим.

    Во временную форму изоляции входит изменение сроков размножения и сдвиги всего цикла жизни. Видообразование на основе временной изоляции называется экологическим.
    Решающим же в обоих случаях является создание новой, несовместимой со старой, генетической системы. Через видообразование реализуется эволюция, вот почему говорят о том, что вид является элементарной эволюционной системой. Популяция - элементарная эволюционная единица!

    Статистические и динамические характеристики популяций.

    Виды организмов входят в биоценоз не отдельными особями, а популяциями или их частями. Популяция - это часть вида (состоит из особей одного вида), занимающая относительно однородное пространство и способная к саморегулированию и поддержанию определенной численности. Каждый вид в пределах занимаемой территории распадается на популяции.Если рассматривать воздействие факторов среды обитания на отдельно взятый организм, то при определенном уровне фактора (например, температуры) исследуемая особь либо выживет, либо погибнет. Картина меняется при изучении воздействия того же фактора на группу организмов одного вида.

    Одни особи погибнут или снизят жизненную активность при одной конкретной температуре, другие - при более низкой, третьи - при более высокой.Поэтому можно дать еще одно определение популяции: все живые организмы, для того чтобы выжить и дать потомство, должны в условиях динамичных режимов экологических факторов существовать в виде группировок, или популяций, т.е. совокупности совместно обитающих особей, обладающих сходной наследственностью.Важнейшим признаком популяции является занимаемая ею общая территория. Но в пределах популяции могут быть более или менее изолированные по разным причинам группировки.

    Поэтому дать исчерпывающее определение популяции затруднительно из-за размытости границ между отдельными группами особей. Каждый вид состоит из одной или нескольких популяций, и популяция, таким образом, - это форма существования вида, его наименьшая эволюционирующая единица. Для популяций различных видов существуют допустимые пределы снижения численности особей, за которыми существование популяции становится невозможным. Точных данных о критических значениях численности популяций в литературе нет. Приводимые значения разноречивы. Остается, однако, несомненным факт, что чем мельче особи, тем выше критические значения их численности. Для микроорганизмов это миллионы особей, для насекомых - десятки и сотни тысяч, а для крупных млекопитающих - несколько десятков.

    Численность не должна уменьшаться ниже пределов, за которыми резко снижается вероятность встречи половых партнеров. Критическая численность также зависит от других факторов. Например, для некоторых организмов специфичен групповой образ жизни (колонии, стаи, стада). Группы внутри популяции относительно обособлены. Могут иметь место такие случаи, когда численность популяции в целом еще достаточно велика, а численность отдельных групп уменьшена ниже критических пределов.

    Например, колония (группа) перуанского баклана должна иметь численность не менее 10 тыс. особей, а стадо северных оленей - 300 - 400 голов. Для понимания механизмов функционирования и решения вопросов использования популяций большое значение имеют сведения об их структуре. Различают половую, возрастную, территориальную и другие виды структуры. В теоретическом и прикладном планах наиболее важны данные о возрастной структуре - соотношение особей (часто объединенных в группы) различных возрастов.

    У животных выделяют следующие возрастные группы:

    Ювенильная группа (детская) сенильная группа (старческая, не участвующая в воспроизводстве)

    Взрослая группа (особи, осуществляющие репродукцию).

    Обычно наибольшей жизнеспособностью отличаются нормальные популяции, в которых все возраста представлены относительно равномерно. В регрессивной (вымирающей) популяции преобладают старческие особи, что свидетельствует о наличии отрицательных факторов, нарушающих воспроизводительные функции. Требуются срочные меры по выявлению и устранению причин такого состояния. Внедряющиеся (инвазионные) популяции представлены в основном молодыми особями. Жизненность их обычно не вызывает опасений, но велика вероятность вспышек чрезмерно высокой численности особей, поскольку в таких популяциях не сформировались трофические и другие связи.

    Особенно опасно, если это популяция видов, ранее отсутствовавших на данной территории. В таком случае популяции обычно находят и занимают свободную экологическую нишу и реализуют свой потенциал размножения, интенсивно увеличивая численность.Если популяция находится в нормальном или близком к нормальному состоянии, человек может изымать из нее количество особей (у животных) или биомассу (у растений), которая прирастает за промежуток времени между изъятиями. Изыматься должны прежде всего особи послепродуктивного возраста (окончившие размножение). Если преследуется цель получения определенного продукта, то возраст, пол и другие характеристики популяций корректируются с учетом поставленной задачи.

    Эксплуатация популяций растительных сообществ (напр., для получения древесины), обычно приурочивается к периоду возрастного замедления прироста (накопления продукции). Этот период обычно совпадает с максимальным накоплением древесной массы на единице площади. Популяции свойственно также определенное соотношение полов, причем соотношение самцов и самок не равно 1:1. Известны случаи резкого преобладания того или иного пола, чередование поколений с отсутствием самцов. Каждая популяция может иметь и сложную пространственную структуру, (подразделяясь на более или менее крупные иерархические группы - от географической до элементарной (микропопуляции) .

    Так, если уровень смертности не зависит от возраста особей, то кривая выживания представляет собой снижающуюся линию (см. рисунок, тип I). То есть отмирание особей происходит в данном типе равномерно, коэффициент смертности остается постоянным на протяжении всей жизни. Такая кривая выживания свойственна видам, развитие которых происходит без метаморфоза при достаточной устойчивости рождающегося потомства. Этот тип принято называть типом гидры - для нее свойственна кривая выживания, приближающаяся к прямой линии. У видов, для которых роль внешних факторов в смертности невелика, кривая выживания характеризуется небольшим понижением до определенного возраста, после которого происходит резкое падение в следствие естественной (физиологический) смертности.

    Тип II на рисунке. Близкий к этому типу характер кривой выживания свойственен человеку (хотя кривая выживания человека несколько более пологая и, таким образом, является чем-то средним между типами I и II). Этот тип носит названия типа дрозофиллы: именно его демонстрируют дрозофиллы в лабораторных условиях (не поедаемые хищниками). Для очень многих видов характерна высокая смертность на ранних стадиях онтогенеза. У таких видов кривая выживания характеризуется резким падением в области младших возрастов. Особи, пережившие "критический" возраст, демонстрируют низкую смертность и доживают до больших возрастов. Тип носит название типа устрицы. Тип III на рисунке. Изучение кривых выживания представляет большой интерес для эколога. Оно позволяет судить о том, в каком возрасте тот или иной вид наиболее уязвим. Если действие причин, способных изменить рождаемость или смертность, приходится на наиболее уязвимую стадию, то их влияние на последующее развитие популяции будет наибольшим. Эту закономерность необходимо учитывать при организации охоты или в борьбе с вредителями.

    Возрастная и половая структуры популяций.

    Любой популяции присуща определенная организация. Распределение особей по территории, соотношение групп особей по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают соответствующую структуру популяции : пространственную, половую, возрастную и т.д. Структура формируется с одной стороны на основе общих биологических свойств видов, а с другой - под влиянием абиотических факторов среды и популяций других видов.

    Структура популяции имеет, таким образом, приспособительный характер. Разные популяции одного вида имеют как сходные особенности, так и отличительные, характеризующие специфику экологических условий в местах их обитания.

    В целом, кроме адаптивных возможностей отдельных особей, на определенных территориях формируются приспособительные черты групповой адаптации популяции как надиндивидуальной системы, что говорит о том, что приспособительные особенности популяции гораздо выше, чем у слагающих ее индивидов.

    Возрастной состав — имеет важное значение для существования популяции. Средняя продолжительность жизни организмов и соотношение численности (или биомассы) особей различного возраста характеризуется возрастной структурой популяции. Формирование возрастной структуры происходит в результате совместного действия процессов размножения и смертности.

    В любой популяции условно выделяются 3 возрастные экологические группы:

    Предрепродуктивную;

    Репродуктивную;

    Пострепродуктивную.

    К предрепродуктивной группе относятся особи, еще не способные к воспроизведению. Репродуктивная - особи, способные к размножению. Пострепродуктивная - особи, утратившие способность к размножению. Длительность этих периодов сильно варьируется в зависимости от вида организмов.

    При благоприятных условиях в популяции имеются все возрастные группы и поддерживается более или менее стабильный возрастной состав. В быстро растущих популяциях преобладают молодые особи, а в сокращающихся — старые, уже не способные интенсивно размножаться. Такие популяции малопродуктивны, недостаточно устойчивы.

    Имеются виды с простой возрастной структурой популяций, которые состоят из особей практически одного возраста.

    Например, все однолетние растения одной популяции весной находятся в стадии проростков, затем почти одновременно зацветают, а осенью дают семена.

    У видов со сложнойвозрастной структурой популяций одновременно живут несколько поколений.

    Например, в стажах слонов имеются молодые, зрелые и стареющие животные.

    Популяции, включающие много генераций (разных возрастных групп) более устойчивы, менее подвержены влиянию факторов, воздействующих на размножение или смертность в конкретном году. Экстремальные условия могут привести к гибели наиболее уязвимых возрастных групп, но самые устойчивые выживают и дают новые генерации.

    Например, человек рассматривается как биологический вид, имеющий сложную возрастную структуру. Устойчивость популяций вида проявилось, например, во время второй мировой войны.

    Для исследования возpастных стpуктуp популяций используют гpафические пpиемы, напpимеp возpастные пиpамиды популяции, шиpоко используемые в демогpафических исследованиях (рис.3.9).


    Рис.3.9. Возрастные пирамиды популяции.

    А - массовое размножение, В - стабильная популяция, С - сокращающаяся популяция

    Устойчивость популяций вида в значительной степени зависит и от половой структуры , т.е. соотношения особей разных полов. Половые группировки внутри популяций формируются на базе различий в морфологии (форма и строение тела) и экологии различных полов.

    Например, у некоторых насекомых самцы имеют крылья, а самки нет, у самцов некоторых млекопитающих имеются рога, но они отсутствуют у самок, у самцов птиц яркое оперение, а у самок маскирующее.

    Экологические различия выражаются в пищевых предпочтениях (самки многих комаров сосут кровь, а самцы питаются нектаром).

    Генетический механизм обеспечивает примерно равное соотношение особей обоих полов при рождении. Однако исходное соотношение вскоре нарушается в результате физиологических, поведенческих и экологических различий самцов и самок, вызывающих неравномерную смертность.

    Анализ возрастной и половой структуры популяций позволяет прогнозировать ее численность на ряд ближайших поколений и лет. Это важно при оценке возможностей промысла рыбы, отстрела животных, спасения урожая от нашествий саранчи и в других случаях.

    Температура среды обитания человека

    Некоторые народы живут в весьма экстремальных условиях и необычных местах, не совсем удобных для жизни. Например, одни их самых холодных населенных пунктов - поселок Оймякон и город Верхноянск в Якутии, Россия. Температура зимой тут в среднем

    составляет минус 45 градусов Цельсия.

    Самый холодный более крупный город тоже находится в Сибири - Якутск с населением около 270 тысяч человек. Температура зимой там составляется также около минус 45 градусов, а вот летом может подниматься до 30 градусов!

    Самая высокая среднегодовая температура была замечена в оставленном городе Даллол, Эфиопия. В 1960-х годах тут зафиксировали средний показатель температуры + 34 С0 . Среди крупных городов самым жарким считается город Бангкок, столица Таиланда, где средняя температура составляет в марте-мае также около 34 градусов.

    Самая экстремально высокая температура, где работают люди, замечена в золотых шахтах Южной Африке. Температура на уровне около 3 километров под землей оставляет плюс 65 градусов Цельсия. Предпринимаются меры для охлаждения шахт, например, используют лед или изолирующие покрытия для стен, чтобы шахтеры могли работать без перегревания.

    Значение температуры состоит, прежде всего, в непосредственном ее влиянии на скорость и характер протекания реакций обмена веществ в организмах. Биологические свойства живых организмов, их клеток и клеточных структур, а также белков предопределяют возможность их жизнедеятельности в интервале температур от 0 до 50°С, однако общий температурный диапазон активной жизни на планете значительно шире и ограничивается следующими пределами (табл. 2).

    Таблица 2. Температурный диапазон активной жизни на планете, С0

    Жизнедеятельность большинства организмов, их активность зависит главным образом, от тепла, поступающего извне, а температура тела -- от значений температуры окружающей среды и энергетического баланса (соотношения поглощения и отдачи лучистой энергии).

    Для каждого организма или группы особей существует оптимальная зона температуры, в пределах которой деятельность выражена особенно хорошо.

    Температурный фактор на большой территории Земли

    Температурный фактор на большой территории Земли подвержен резко выраженным суточным и сезонным колебаниям, что в свою очередь обусловливает соответствующий ритм биологических явлений в природе. В зависимости от обеспеченности тепловой энергией симметричных участков обоих полушарий земного шара, начиная от экватора, различают следующие климатические зоны:

    1. Тропическая зона. Минимальная среднегодовая температура превышает 16 °С, в самые прохладные дни не опускается ниже 0°С. Колебания температуры во времени незначительны, амплитуда не превышает 5 °. Вегетация круглогодичная.

    2. Субтропическая зона. Средняя температура самого холодного месяца не ниже 4 °С, а самого теплого -- выше 20 °С. Минусовые температуры редки. Устойчивый снежный покров зимой отсутствует. Вегетационный период продолжается. 9--11 мес.

    3. Умеренная зона. Хорошо выражены летний вегетационный сезон и зимний период покоя растений. В основной части зоны устойчивый снежный покров. Весной и осенью типичны заморозки. Иногда эта зона подразделяется на две: умеренно теплую и умеренно холодную, для которых характерно четыре времени года.

    4. Холодная зона. Среднегодовая температура ниже 0 °С, заморозки возможны даже в течение короткого (2--3 мес.) вегетационного периода. Очень велико годовое колебание температуры.

    Закономерность вертикального размещения растительности, почв, животного мира в горных районах обусловлена главным образом также температурным фактором. В горах Кавказа, Индии, Африки можно выделить четыре-пять растительных поясов, последовательность которых снизу вверх отвечает последовательности широтных зон от экватора к полюсу на одной и той же высоте.

    Животный мир является одним из самых главных компонентов природной среды. Без него невозможно существование нашей планеты

    Изучаемые вопросы, потребуют для ответа сведений, не только полученных на данном занятии, но и материал уроков ботаники и зоологии. Материал можно использовать для изучения "Окружающего мир" в начальной школе.

    Тип учебного занятия: изучения и первичного закрепления новых знаний,

    применение их на практике.

    Форма проведения: Лекция, видеоматериал

    Дидактическая цель: создать условия для осознания и осмысления блока новой учебной информации

    Основные понятия-

    Холоднокровные животные. Двигательная активность. Спячка.

    Оцепенение. Теплокровные животные. Постоянная температура тела

    Вопросы для обсуждения

    1.Для чего животному нужно тепло?

    2.Каковы источники тепла для холоднокровных и теплокровных животных?

    3.Как животные реагируют на понижение и повышение температуры в среде обитания?

    Температурные условия поверхности планеты чрезвычайно разнообразны. Наиболее жаркие территории расположены вблизи экватора — это тропики и суб-тропики. Наиболее холодные — вблизи полюсов — это приполярные области. Ме-жду ними лежат области с умеренной температурой. Сильно изменчивы и темпе-ратурные условия водоемов. Самая низкая температура в глубинах океана 0°С. Наиболее высокая температура зарегистрирована в горячих источниках +60°С.

    Животные обитают практически во всем температурном диапазоне, кото-рый представлен на планете.

    В теле животного постоянно происходит обмен веществ. Его интенсив-ность зависит от температуры тела животного. В то же время обмен веществ обеспечивает животное энергией. На температуру тела животных оказывает влияние температура окружающей среды. Любой организм может жить только в пределах определенного интервала внешних температур. При слишком сильной жаре или при слишком сильном холоде животное погибает.

    Большинство живущих на Земле животных — холоднокровные , т. е. не имеют постоянной температуры тела. Их температура близка к температуре окружаю-щей среды: когда холодно — они охлаждаются, а если очень жарко — они могут перегреться. У животных есть разные способы реагировать на температуру сре-ды и соответственно регулировать свою температуру. Один способ — так греться на солнце, чтобы оно освещало и нагревало как можно большую поверхность их тела. В умеренном климате этим способом пользуются многие прямокрылые на-секомые — кузнечики, саранча; так же ведут себя и пресмыкающиеся (рис.1). Это особенно необходимо самкам при подготовке к размножению.

    Замечено также, что крупная ящерица — пустынная игуана — на протяже-нии суток может изменять окраску тела: с утра, когда еще не жарко, она окраше-на в более темные тона, а по мере усиления солнечного тепла она бледнеет. Тем-ная окраска способствует поглощению внешнего тепла, а светлый тон отражает солнечное излучение. Это используют и пустынные черепахи: в утренние часы они выставляют из-под панциря свои темные лапы, улавливая тепло.

    Другой способ реакции на внешнюю температуру — изменение двигательной активности , Исследования показали, что мышечная работа всегда способствует разогреванию тела. При понижении температуры увеличивается двига-тельная активность холоднокровного животного. Замечено, что даже мокрицы и многоножки при понижении температуры становятся более подвижными. А на-блюдения за бабочками-бражниками показали, что они, прежде чем пуститься в полет, активно машут крыльями, разогревая свое тело.

    Не надо думать, что животные, живущие в жарком и сухом климате, спокой-но выносят любое повышение температуры. Для них температура нагретого песка губительна, и если даже пустынную ящерицу насильно удерживать на этой поверх-ности. она вскоре погибнет от перегрева. И здесь на помощь приходят поведенче-ские маневры. Например, ушастая круглоголовка быстро проскальзывает по разогретому песку, затем замирает и, конвульсивно изгибая тело, закапывается в него, а чтобы не задохнуться, выставляет на поверхность кончик носа с парой маленьких ноздрей. У некоторых пустынных черепах при значительном повышении темпера-туры воздуха резко возрастает отделение слюны. Вытекая изо рта, она смачивает нижнюю часть головы, шею и конечности — так черепаха охлаждается.

    Рис. 1. 1 - саранча; 2- кузнечик; 3 - веретеница; 4 - прыткая ящерица; 5 -ящерица-круглоголовка.

    Реакция на повышение или понижение температуры среды свойственна и водным животным. Зимой рыбы, амфибии впадают в оцепенение . Осетры на реке Урал лежат неподвижно близ дна, их тело покрывается толстым слоем сли-зи, которая изолирует рыбу от низких температур. Караси закапываются в ил, температура их тела опускается до 0,2-0,3°С.

    Земноводные уже при температуре 7-8°С впадают в оцепенение. Вот поче-му они наиболее разнообразны и многочисленны в тропиках и субтропиках. По мере движения к полюсам их становится все меньше, а за Полярный круг прони-кают лишь два вида лягушек и один вид тритона (сибирский углозуб).

    А как живут теплокровные животные — с постоянной температурой тела ? Они, безусловно, обладают большими преимуществами во взаимодействии с пе-ременчивыми условиями среды по сравнению с предыдущей группой, хотя в об-щем изобилии видов животных планеты они составляют меньшинство. Постоян-ная высокая температура тела (+38...+40°С для млекопитающих и +40...+42°С для птиц) — их главное преимущество. Однако эта группа животных тоже реагирует и на перегрев, и на слишком низкую температуру среды. Эта реакция выражает-ся в различных приспособлениях организма (густота волосяного или перьевого покрова, наличие подкожного слоя жира, частота дыхательных движений).

    Рис. 2. Обыкновенная белка:1-летом; 2-зимой Рис. 3.Группа пингвинов защищается от ветра

    Вот, к примеру, всем хорошо знакомая лесная птица — чиж, одна из мель-чайших птиц нашей отечественной фауны. При осенней линьке и приближении зимы количество пуховых перьев на теле чижа увеличивается.